
for Haters

Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Talk at CocoaHeads Aachen 
Werner Lonsing 

5/24/2018

A new programming language



for Haters

Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Developed in the early 1980s by Brad Cox, as ‘soldering gun’ for 
‘Software-ICs’, then used and later acquired by NeXT in 1987. 

There is almost no documentation, and it is not needed. 

The values of the language are in its runtime and the related frameworks.

Looking back: Objctive-C
Is Objective-C a language at all? 

Technically: A preprocessor as thin layer above C-Compiler. 
Classes have 2 files, interface and implementation, 
top level keywords (@end), implicit type defaults to ‘id’ 
Syntax for method-calls: [obj with: val], declaration ‘-‘ or ‘+’,’ 
Usually instance-methods returned ‘self’ for chaining. 
The rest is strict C

@interface MyClass : NXObject { 
 // instance variables 
id theObject; 
} 

+ classMethod; 

- instanceMethod; 
- instanceMethodWithParameter:myObject; 
- otherMethod: (float)value; 

@end 

@implementation MyClass 
+ classMethod 
{… 
} 

- instanceMethod 
{ 
[theObject doSomething]; 
return self; 

} 

@end 

chaining 
[[[[myObject do:now]andThen]later]finally];



for Haters

Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Objective-C: Going South

Getters and setters
‘retain’ and ‘release’
ARC and properties
GCD and Blocks

Nullability
Dot-syntax

Punching holes
Distributed ownership
Clogged interface:@property(getter=theDisplay, readonly, retain) NSView *theView;
[who knows:^void (blocks) {anybody}];

Greetings from Swift: @property (readonly, nonatomic) NSView * _Nonnull aView;
Same thing twice: [myView window]; vs. myView.window;

… we were doomed …

Literals Not that bad: @“string”, @[a,b,c]; @{ k1: o1, k2: o2};



Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

for Haters Looking @ Swift
A new language to the rescue.

Swift is a real computer language, not a bloated preprocessor, 
with a full range of features, namely dot-syntax with round and curled 
brackets on a single file. 
It has concurrent types: ‘String’ vs. ‘NSString’, ‘Array’ vs. ‘NSArray’ etc. 
It offers a lot of rude expressions nobody immediately understands:

[_] [String:Any] [NSString] 
((value?)!) 

func swapTwoValues<T>(_ a: inout T, _ b: inout T)

empty array of type 
optionals 

generic typing

Safety first: Empty object-pointers and type mismatching is 
made (almost) impossible, because such code never compiles.



for Haters

Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Looking @ Swift

Mixing types: What?

Float, CGFloat, Double
Why is there a difference? 
Who has, as a developer in need of a 
‘soldering gun’, intentions to make a 
difference like: 

let a:CGFloat = 1.2 
let b = Float(a)

Why does this not compile? 

let a = 1.2 as! CGFloat 
let b = 0.1 as! Float 

let c = a * b 

instead of explicit typing 
let c = Float(a) * b



for Haters

Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Looking @ Xcode
May Xcode and its automated 
correctional facilities be always with you!

There is one question: 
If the machine, the software, knows what is wrong and how 
to do it right, why can’t the machine do it on its own?

Maybe some more questions: 

Why the torture? 
Why is that the stuff not under the hood?



for Haters

Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Looking @ Updates

Who likes compatibility?

2014-09-09 Swift 1.0
2014-10-22 Swift 1.1
2015-04-08 Swift 1.2
2015-09-21 Swift 2.0
2016-09-13 Swift 3.0
2017-09-19 Swift 4.0
2018-03-29 Swift 4.1

Demo



Talk: Swift for Haters, CocoaHeads, Aachen © W. Lonsing 2018

Thank you.

The End


